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Ruthenium residues can be easily and rapidly removed from Grubbs metathesis products by washing
with 15% aqueous hydrogen peroxide, which converts any ruthenium complexes into highly insoluble
ruthenium dioxide, which then catalyzes the conversion of excess peroxide into water and oxygen.
Ruthenium levels lower than 2 ppm can be routinely obtained; an additional advantage is that any phos-
phines are also rapidly oxidized to the corresponding, more polar phosphine oxides thereby facilitating
their removal as well in many cases.

� 2009 Elsevier Ltd. All rights reserved.
Amongst the many spectacular developments in synthetic or-
ganic methodology in recent times, the various forms of metathesis
chemistry represent one of the most significant, representing a
true paradigm shift in synthetic thinking. In particular, the devel-
opment of the two Grubbs catalysts, Mark I and Mark II, and the la-
ter addition of the Grubbs–Hoveyda complex have rendered this
methodology readily available to all.1 The breadth of applications
has already made these essential tools in many synthetic endeav-
ours. Such ubiquitous chemistry is, however perhaps inevitably,
not without some drawbacks. When compared with the magnifi-
cence of the method, one of these seems almost trivial: it is often
very difficult to separate the desired product(s) from the ruthe-
nium catalysts 1–3, despite these being used in small quantities,
typically 1–5 mol %.

Unfortunately, it turns out that it is often very difficult to com-
pletely remove ruthenium residues by the usual silica gel-based
chromatographic methods. While this can often be addressed by
crystallization or distillation, or even by gradual loss during subse-
quent steps or repeated chromatography, it is not only an annoying
and tedious feature of this otherwise generally superb methodol-
ogy, it also presents serious problems in pharmaceutical synthesis,
wherein permitted levels of such metallic contaminants are very
low. For example, the allowed levels for oral administration
amongst members of the platinum group [Pt, Pd, Ir, Rh, Ru and
Os] are only 5 ppm or below a total of 20 ppm if two or more are
present.2
ll rights reserved.
It is therefore hardly surprising that a number of methods for
the removal of ruthenium residues from completed metathesis
reactions have been reported during the past few years. The first
contribution was, unsurprisingly, from the Grubbs group who sug-
gested using some 86 equiv of tris-(hydroxymethyl)phosphine to
complex the ruthenium contaminants.3 Other complexation meth-
ods include the addition of either 50 equiv of triphenylphosphine
oxide or 100 equiv of dimethyl sulfoxide followed by filtration
through silica gel,4 later extrapolated to the use of a polymer-
bound phosphine.5 Such methods remove the ruthenium down
to the 200 ppm level at best. However, filtration through an alter-
native immobilized species, aminopropyltriethoxysilane on silica
or related solid supports, can take these levels down as low as
35 ppm.6 Related methods include filtration through activated car-
bon,7 supercritical fluid8 and the use of a modified catalyst.9 More
recently, two methods have been reported wherein the ruthenium
is removed as a water-soluble species, either by the addition of a
polar isocyanate10 or by using a modified Mark II catalyst (cf. struc-
ture 2) having a polyethyleneglycol (PEG) chain incorporated into
the carbene ligand.11 With the exception of the silane method,6

none of these methods look to be especially efficient and/or prac-
tical and often require the use of relatively large amounts of com-
plexing agents. Perhaps curiously, there has been only one report
of an overtly chemical method for ruthenium removal. This
features oxidation by the addition of 1.5 equiv of lead (IV) acetate
relative to the catalyst to a completed metathesis reaction followed
by stirring at ambient temperature overnight and filtration
through silica gel, reported by the Paquette group.12 This reduces
ruthenium levels to around 300 ppm, arguably a surprisingly high
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Scheme 3. A representative RCM reaction.17
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level for such a chemical method. It would therefore seem that
there is still a need for the development of practical, cheap and
potentially large-scale purification methodology in this area. All
of this chemistry has recently been summarized by Nolan and
co-workers.13

We have recently reported that a straightforward hydrogen per-
oxide wash can obviate the requirement for extensive chromatog-
raphy in the separation of Mitsunobu products from excess and
spent reagents.14 No doubt, a significant role associated with such
peroxide washes is the rapid oxidation of any phosphines to the
corresponding, much more polar and hence more easily removed
phosphine oxides. It occurred to us that a similar oxidative proce-
dure could be effective for the decomposition and eventual re-
moval of ruthenium catalyst residues from metathesis reaction
products. Herein, we report that this is indeed a successful and
simple method, which could find widespread application (Scheme
1).

We first came across the ruthenium removal problem when
preparing samples of the (E,E)-dienyl diesters 5 using the remark-
ably efficient cross metathesis reaction between a cycloalkene [e.g.,
4] and an acrylate (Scheme 2).15 We used the Mark II catalyst 2 at
levels as low as 0.37 mol % but could still not remove the ruthe-
nium completely. We observed that simply stirring the completed
reaction mixture under air for 48 h converted all the ruthenium
into insoluble ruthenium dioxide without a significant reduction
in product yield. However, this is clearly not an attractive or even
viable procedure, except perhaps in relatively exceptional cases.

The idea of using oxidative ruthenium removal was then trans-
lated into an application of our chromatography-free Mitsunobu
work-up procedure.14 The crude reaction product containing the
diester 5 was simply vigorously stirred with a large excess of
15% v/v aqueous hydrogen peroxide at ambient temperature.16

During the next fifteen minutes or so, the mixture began to effer-
vesce with increasing vigour and there was a mild exotherm, both
of which subsided after this time as a blue–black solid was precip-
itated. A subsequent starch–iodine test showed the absence of per-
oxide. After a very simple aqueous work-up, the dienyl diesters 5
were isolated in over 80% yields as pure clear oils, which showed
spectroscopic and analytical data identical to those previously
reported.15

A second example and one which has served as a standard test
of previous purification methods2,11,13 was used to determine the
efficacy of the present method for the removal of the Mark I cata-
lyst 1 (Scheme 3). This entailed the ring-closure metathesis of the
diallyl malonate 617 to give the cyclopentene diester 7.1,18 Follow-
ing completion of the rapid RCM, the reaction mixture was worked
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Scheme 2. A useful cross metathesis reaction.15
up16,19 in a similar fashion to the foregoing cross metathesis shown
in Scheme 2.

Samples of the two products 5 and 7 were then analyzed for
their ruthenium content, along with additional samples, prepared
using higher levels of catalyst, to provide a sterner test of the pres-
ent removal procedure. In addition, one of the runs was left to stir
open to the air for a prolonged period, with no addition of perox-
ide. Each sample was analyzed using ICPMS,20 in line with most
previous reports. The results are collected in Table 1.

Presumably because of the much higher catalyst loading, a sin-
gle wash of the reaction mixture containing 5 mol % of Grubbs
Mark 1 catalyst 1 only removed around 85% of the ruthenium;
however, a second treatment with hydrogen peroxide (entry 2) re-
duced the ruthenium level to around 15 ppm.

Interestingly, as mentioned above, simply stirring a reaction
mixture containing a relatively low level of the Mark II catalyst 2
under air for 48 h resulted in oxidation of the bulk of the ruthe-
nium, the level of which was reduced to 132 ppm (entry 3).
Although attractive in some ways, many final products may not re-
spond well to such a lengthy exposure to the atmosphere. In con-
trast, a single exposure to hydrogen peroxide in examples with this
low level of catalyst loading led to almost complete removal of
ruthenium (entries 4 and 5) and one certainly acceptable for phar-
maceutical synthesis.2 At higher catalyst loadings above 1 mol %
(entries 6 and 7), two washes were necessary to reach similar lev-
els although a single treatment (entry 6) achieved a ruthenium le-
vel of around 12 ppm. These ruthenium levels are significantly
lower than most previously reported.

An additional benefit of the present oxidation procedure is that
it will assist in the removal of the other catalyst components. Thus,
from our previous work,14 no doubt the phosphine ligands will be
rapidly oxidized to the much more polar oxides, which should be
removed during the filtration through silica gel. The released benz-
aldehyde might also be oxidized but to benzoic acid and similarly
removed. The fate of the carbene ligand is uncertain, but a distinct
possibility is oxidation to the corresponding cyclic urea, again a
very polar material (Scheme 4). Although not examined, we as-
sume that the related Grubbs–Hoveyda catalyst 3 would undergo
comparable decomposition at a similar rate.

The one drawback of the present method is the requirement for a
considerable excess of hydrogen peroxide by reason of its rapid
decomposition by the ruthenium dioxide produced as the metathe-
sis catalyst is destroyed (Scheme 4).21 While it is certainly possible
to carry out the oxidation in a separating funnel, this requires great
care and manual dexterity as the oxygen is released quite rapidly.
The method described in Ref. 16 is therefore recommended. It is also
possible to carry out the oxidation by adding the aqueous peroxide
Table 1
Ruthenium content after oxidation

Entry Catalyst (mol %) Work-up [Ru] ppm % removal

1 Mk 1 (5.0) H2O2 2116 84.90
2 Mk 1 (5.0) H2O2 (2�) 15.10 99.45
3 Mk 2 (0.37) Air (48 h) 132 85.76
4 Mk 2 (0.37) H2O2 1.33 99.95
5 Mk 2 (0.37) H2O2 2.05 99.55
6 Mk 2 (1.37) H2O2 12.46 99.28
7 Mk 2 (1.37) H2O2 (2�) 2.53 99.88
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as a slow stream. In our view, this should be an easily scalable meth-
od, given due attention to the formation of oxygen, which surely can
be readily controlled at a perfectly safe level.

Given the cheapness of hydrogen peroxide, together with the
fact that no by-products are produced during the oxidation which
require any separation, we contend that this method should find
many applications on both small scale and large scale, the latter
after some further development. Indeed, given that it is easy to
separate the ruthenium dioxide, which is produced most likely as
a hydrate, this might be regarded as a ‘green’ method and will cer-
tainly be amenable to the easy isolation and re-use of the ruthe-
nium dioxide, which is not a particularly cheap reagent.

In terms of group and compound compatibility, dilute aqueous
hydrogen peroxide is a relatively innocuous reagent and will not
attack many functionalities, especially during the brief exposure
under these neutral conditions required here. In our earlier work,14

we showed that 1,3-dithiane was not oxidized by exposure to 15%
aqueous hydrogen peroxide during around 10–15 min at ambient
temperature, approximately the conditions used here. No doubt
there will be some incompatibilities but we anticipate that these
will be very few.
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